

Searching in Applications Containing Bio-Sequences

Ram R. Shukla Supervisory Patent Examiner Art Unit 1634 571 272 0735 ram.shukla@uspto.gov

Types of Molecules Claimed: Nucleic Acids

Sequence Structure

- A polynucleotide sequence that encodes a polypeptide (cDNA/ Genomic)
- Oligomers
- Probes/Primers
- Fragments

Types of Molecules Claimed: Nucleic Acids

Function

- Antisense/Complements RNAi/Ribozymes/Triplex
- Aptamers
- Amino Acid Binding Domains
- Immunostimulatory CpG Sequences
- Transgene
- **Regulatory Sequences**

Types of Molecules Claimed: Nucleic Acids

Other

Accession Number Single Polynucleotide Polymorphism rs (Reference SNP) number Biological Deposit

Types of Molecules Claimed: Amino Acid Sequences

Structure

- An amino acid sequence
- Oligopeptide
- Specifically Identified Fragments
- Accession Number
- A polypeptide encoded by a polynucleotide sequence

Function

- Nucleic Acid Binding Domains
- Antibody
- **Dominant Negative Mutant**

Types of Sequences Claimed: Sequence Disclosure and Compliance

<u>IF</u> an application discloses a nucleotide or an amino acid sequence and (Sequences may be anywhere in the application including specification, drawings, abstract)

the nucleic acid sequence is a specific unbranched sequence of 10 or more nucleotides; and/or

the amino acid sequence is a specific unbranched sequence of 4 or more amino acids,

<u>THEN</u> the application must be analyzed for compliance with the sequence rules (37 CFR 1.821-1.825).

See MPEP 2422 for Sequence Compliance Requirements www.cabic.com/bcp/060408/RWax_SRCPAI.ppt

Types of Sequences Claimed: Accession Number

If a sequence is claimed by an Accession No, the specific sequence has to be disclosed in the specification.

If the specification does not disclose the sequence of the Accession No, the office may object to the specification.

Types of Nucleotide Searching: Accession No

If the sequence is added to the Specification

It must be determined if the sequence has been properly incorporated by reference and adds no new matter.

The sequence must be uniquely identified.

For discussion of incorporation by reference of a sequence, see the BCP presentations by Jean Witz at the Sept 2008 BCP meeting (<u>http://www.cabic.com/bcp/090908/JWitz_IBR.ppt</u>) and Julie Burke at the June 2008 BCP meeting (http://www.cabic.com/bcp/060408/JBurke_SREI.ppt)

Search Strategy

The sequence recited in the Claim is used as the search query.

The interpretation of a claim requires a sequence to be present and used as a query for a search of sequence databases.

What is searched?

Claim interpretation

- Complementary/Antisense sequences
- Reverse Transcription/Translation
- RNA reverse transcribed to DNA
- Protein back translated to DNA
- cDNA, genomic DNA
- Oligomer/primers/probes

Smith-Waterman

Finds an optimal local alignment between two protein (p2p) or two nucleic (n2n) sequences.

Uses a two-dimensional matrix to look for the highest scoring alignment

Similarity score is calculated based on:

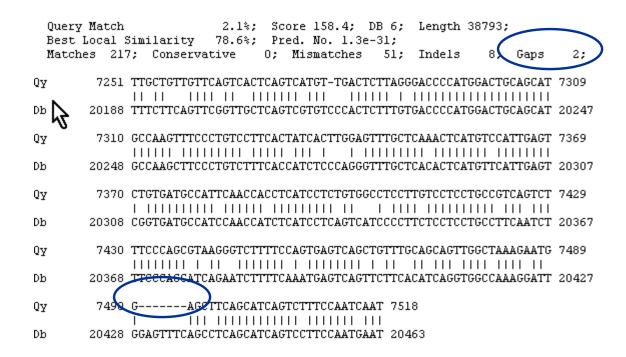
Comparison matrix: provides probability scores for all substitutions between pairs of residues

Gap penalties: cost of inserting or deleting residues in the alignment

There are two gap penalty models:

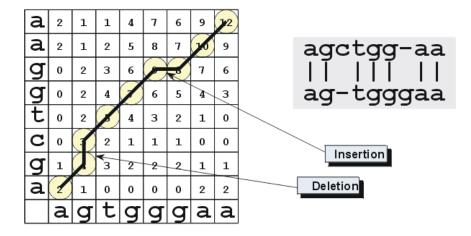
Non-affine: a single gap penalty value is applied to any unmatched residue Affine: a penalty for a gap is calculated as gapop+gapext*1, where gapop is the penalty for opening a gap, gapext is the penalty for extending the gap, and I is the length of the gap.

Smith and Waterman, Advances in Applied Mathematics, 2:482-489 (1981)



Search Request Considerations: How much substitution does the claim allow ?

	y Match : Local :	1.8%; Score 132.8; DB 8; Length 403; Similarity 77.4%; Pred. No. 8.5e-26;	
Matc	hes 16.	l; Conservative 0; Mismatches 47; Indels 0; Gaps 0;	
Qy	7280	GACTCTTAGGGACCCCATGGACTOCAGCATGCCAAGCTCCCCTGTCCTTCACTATCACTT 7339	
Db	213	GACTCTTTGCGACCCCATGAATCACAGCACGCCAGGCCTCCCTGTCCATCACCAACTCCC 154	
Qy	7340	GGAGTTTGCTCAAACTCATGTCCATTGAGTCTGTGATGCCATTCAACCACCTCATCCTCT 7399	
Db	153	GGGGTTCACTCAGACTCATGTCCATAGAGTCAGTGACGCCATCCAGCCATCTCATCCTCT 94	
Qy	7400	GTGGCCTCCTTGTCCTGCCGTCAGTCTTTCCCAGCGTAAGGGTCTTTTCCAGTGAGT 7459	
Db	93	GTTGTCCCCTTCTCCTCCTGCCCCCAATCCCTCCCAGCATCAGAGTCTTTTCCAATGAGT 34	
Qy	7460	CAGCTETTTECAGCAGTTGGCTAAAGAA 7487	
Db	33	CAACTCTTCGCATGAGGTGGCCAAAGGA 6	

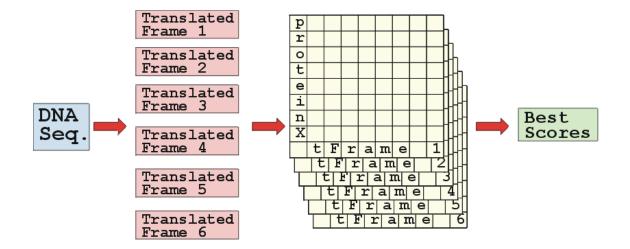


Search Request Considerations: Does the claim allow for gaps?

Smith-Waterman (cont'd)

In each cell, the algorithm stores the highest score of all possible paths leading to the cell Each path can be described as a traversal of an *automaton* consisting of three states:

Match: two residues are matched


Insert: the query matches a gap to a database residue

Delete: the query matches a residue with a gap in the database sequence

The path leading to the highest score can be of any length, and, by definition of a *local alignment*, doesn't have to start at the beginning or end at the end of both sequences.

Translated Smith-Waterman

First translate the nucleic sequence into three or six reading frames, then align each frame independently to the protein sequence; in the results, indicate the frame that produced each high-scoring hit.

Types of Nucleotide Sequence Searching: Standard Search

Query using the full length of the SEQ ID NO (up to 10 Kb in size) useful for finding full length hits.

hit size could be limited to a size range by requesting a "lengthlimited" search (range provided by the examiner).

the search parameters are the default parameters-Gap Opening Penalty 10 & Gap Extension Penalty of 1.

Types of Nucleotide Sequence Searching: Standard Search

Interpretation of the search results is needed to find fragments and genomic sequences.

Fragments are buried in the hit list.

The presence of introns in the database sequence results in low scores.

Types of Nucleotide Sequence Searching: Standard Search

For a large sequence, 10 kb or greater, multiple large subsections of the sequence are used as a query to search the databases.

For a genomic sequence,

- If exons and their boundaries are known, several exons are searched.
- If exons are not known, multiple large subsections of the sequence are used as a query to search the database.

Impact of Sequence Identity and Length

Adjustment of search parameters (e.g. Smith-Waterman Gap values) influences % Query Match value.

% Query Match value approximates overall identity

Mismatches

- Varying Degrees of Percent Identity

Gaps

- Insertion or Deletions
- Gap Extensions

Wild Cards

Complements/Matches

Types of Nucleotide Sequence Searching

Standard Oligomer:

Prioritizes the longest uninterrupted hits.

Accomplished by significantly increasing the gap penalty.

The hit size could be limited to a size range by requesting a "length-limited" search (range provided by the examiner).

Not optimal for finding small sequences that are 100% identical or complementary.

Score Over Length Searching

Optimal for finding small sequences that are 100% identical or complementary.

Calculated by dividing the hit score by the hit length hit "score" represents the number of perfect matches between query and hit.

The number of perfect matches relative to a hit's length is calculated (Score/Length).

hits then sorted by Score/Length value.

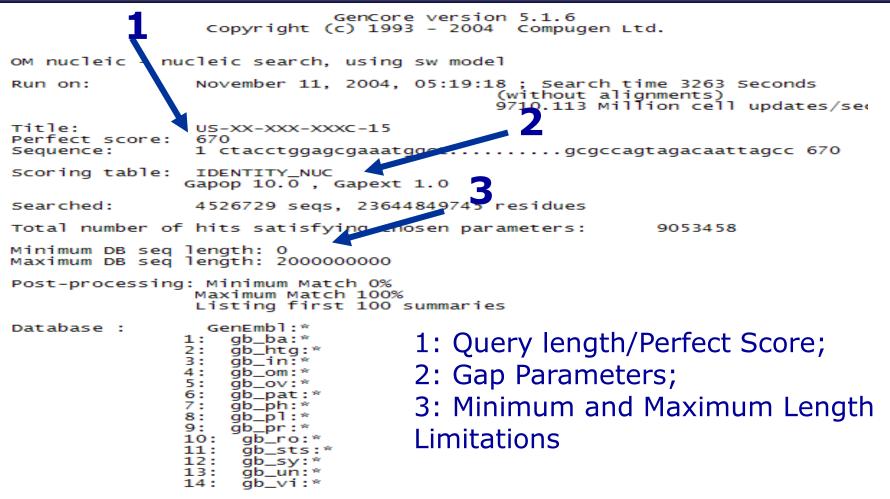
Hits with a Score/Length value closer to "1" are prioritized.

Publicly Available Databases: Nucleic Acids

GenEMBL N_Genseq Issued_Patents_NA EST Published_Applications_NA

Publicly Available Databases: Proteins

A-Geneseq UniProt PIR Published_Applications_AA Issued_AA


USPTO Databases Searched at the Time of Allowability

Published_Applications_NA Issued_NA Pending_Applications_NA

Published_Applications_AA Issued_AA Pending_Applications_AA

Search Results

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Search Results

1		%	2		SUMMARIES	
Result No.	score	Query Match I	Length	DB	ID	Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 7 28 9 30 31 32 33	670 670 650.8 534 534 530.8 530.8 530.2 529.4 519 516.2 506.8 505.2 505.2 502.8 505.2 502.8 496.8 496.8 496.2 495 493.8 496.8 479.6 473.2 472.4 468 460 456.6 453.4 451.6	100.0 97.1 79.7 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.5 75.6 75.6 75.6 75.6 75.6 74.1 73.7 71.16 70.5 69.9 68.1 67.7 67.6	670 670 1154 1158 1170 1171 1279 1065 1104 1156 885 1162 567 567 567 819	<u><u><u></u></u> <u></u> <u></u> </u>	E59319 AR207433 AY334554 HNPGH CIPGH CIPGH CIPGH AY375302 CCGH AF069399 AY375301 AY616661 AF389238 CYIGH AR222492 AY265352 AY160977 AF069398 AR222493 AF140281 AF389237 AY053361 AF332563 AF401273 AF140282 AF416490 AF134200 AF458105 CAU28388 AF332594 BD096861 AF401272	AY375302 Ictrobus X13670 Cyprinius c AF069399 Carassius AY375301 Ictiobus AY616661 Ctenophar AF389238 Mylophary M27000 Cyprinus ca AR222492 Sequence AY265352 Carassius AY160977 Carassius AF069398 Carassius AF069398 Carassius AF069398 Carassius AF22493 Sequence AF140281 Cirrhinus AF389237 Carassius AF337033 Megalobra AF332563 Megalobra AF401273 Carassius AF140282 Catla cat AF416490 Labeo roh AF134200 Labeo roh AF134200 Labeo roh AF134200 Labeo roh AF134200 Labeo roh AF458105 Cirrhinus U28388 Carassius a AF332594 Cyprinus BD096861 Method fo
33 34 35	452.8 451.6 376.8	67.6 67.4 56.2	1047 476	5	AF401272 AY286447	AF401272 Carassius AY286447 Danio rer

26

Standard Search GenBank Alignments Against cDNA

QY	1 CTACCTGGAGCGAAATGGCTAAAGCTTTAGTGCTGCTGTCTTTGGTCCTGGTCAGTGTTT 60
Db	1 CTACCTGGAGCGAAATGGCTAAAGCTTTAGTGCTGCTGTCTTTGGTCCTGGTCAGTGTTT 60
QV	61 TTGTGAATAATGGGACTGCCTCAGAAAACCAGAGGCTCTTCAACAACGCAGTCATCCGTG 120
Db	61 TTGTGAATAATGGGACTGCCTCAGAAAACCAGAGGCTCTTCAACAACGCAGTCATCCGTG 120
QY	121 TACAACACCTGCACCAGCTGGCTGCAAAAATGATCAATGACTTTGAGGACAGCCTGTTAC 180
Db	121 TACAACACCTGCACCAGCTGGCTGCAAAAATGATCAATGACTTTGAGGACAGCCTGTTAC 180
QV	181 CTGAGGAACGCAGGCAGCTGAGTAAAATCTTCCCATTGTCCTTCTGCAACTCTGACTCTA 240
Db	181 CTGAGGAACGCAGGCAGCTGAGTAAAATCTTCCCATTGTCCTTCTGCAACTCTGACTCTA 240
QY	241 TAGAGGCTCCCACTGGCAAAGATGAAACGCAGAAAAGCTCTGTGCTGAAGCTGCTTCGCA 300
Db	241 TAGAGGCTCCCACTGGCAAAGATGAAACGCAGAAAAGCTCTGTGCTGAAGCTGCTTCGCA 300
QY	301 TCTCCTTCCGCCTCATTGAGTCTTGGGAGTATCCCAGCCAG
Db	301 TCTCCTTCCGCCTCATTGAGTCTTGGGAGTATCCCAGCCAG
QY	361 CAAACAGCCTGACCATCGGCAACCCCAGCCAGATCACAGAGAAGCTGGCCGATCTGAAAG 420
Db	361 CAAACAGCCTGACCATCGGCAACCCCAGCCAGATCACAGAGAAGCTGGCCGATCTGAAAG 420
QY	421 TGGGCATCAGCGTGCTCATAAAGGGATGTCTTGATGGACAGCCAAACATGGACGATAATG 480
Db	421 TGGGCATCAGCGTGCTCATAAAGGGATGTCTTGATGGACAGCCAAACATGGACGATAATG 480
QY	481 ACTCCCTGCCATTGCCTTTTGAGGATTTCTACTTGACTTTGGGGGGAGAATAACCTCAGAG 540
Db	481 ACTCCCTGCCATTGCCTTTTGAGGATTTCTACTTGACTTTGGGGGGAGAATAACCTCAGAG 540
QY	541 AGAGCTTTCGTCTGCTGGCCTGCTTTAAGAAAGACATGCACAAGGTTGAAACCTACCT
Db	541 AGAGCTTTCGTCTGCTGGCCTGCTTTAAGAAAGACATGCACAAGGTTGAAACCTACCT
QY	601 GGGTTGCGAACTGCAGGCGATCCCTCGATTCCAACTGTACCCTGTAGAGGGCGCCAGTAG 660
Db	601 GGGTTGCGAACTGCAGGCGATCCCTCGATTCCAACTGTACCCTGTAGAGGGCGCCAGTAG 660
QY	661 ACAATTAGCC 670
Db	661 ACAATTAGCC 670

Oligomer Search GenBank Hit Table Against cDNA

	GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.					
OM nucleic - nuc	cleic search, using sw model					
Run on:	November 11, 2004, 03:54:36 ; Search time 3262 Seconds (without alignments) 9713.090 Million cell updates/sec					
Title: Perfect score: Sequence:	US-XX-XXX-XXX-15 670 1 ctacctggagcgaaatggctgcgccagtagacaattagcc 670					
Scoring table:	Gap Penalties					
Searched:	4526729 Seqs, 25044849745 residues					
Word size :	0					
Total number of	hits satisfying chosen parameters: 9053458					
Minimum DB seq length: 0 Maximum DB seq length: 2000000000						
Post-processing:	: Listing first 100 summaries					
	GenEmbl:* 1: gb_ba:* 2: gb_htg:* 3: gb_in:* 4: gb_om:* 5: gb_ov:* 5: gb_pat:* 7: gb_ph:* 8: gb_pl:* 9: gb_pr:* 10: gb_ro:* 11: gb_sts:* 12: gb_sy:* 13: gb_un:* 14: gb_vi:*					
Dred No.	is the number of necults predicted by shapes to have a					

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Oligomer Search GenBank Hit Table Against cDNA

Result Query No. Score Match Length DB ID Description 1 670 100.0 670 670 670		т				SUMMARIES	
No. Score Match Length DB ID 1 670 100.0 670 6 E59319 E59319 Vector expr	71+	I	~~~~~~				
1 670 100.0 670 6 E59319 E59319 Vector expr	NO.		Match	Length	DB	ID	•
9 38 5.7 819 6 BD096861 Method fo 10 38 5.7 894 5 AF416490 AF416490 AF416490 AF416490 Labeo roh 11 38 5.7 894 5 AY053361 AT140281 Catrla cat 12 38 5.7 1156 5 AF140282 AF140281 Catrla cat 13 38 5.7 1156 5 AF418921 AF418921 Labeo roh 14 38 5.7 2838 5 CCGHG AF418921 Labeo roh 16 38 5.7 21576 5 AY03360 AY053360 Catrla cat 19 35 5.2 12779 5 AY375301 AY148493 Anguilla cat 20 32 4.8 633 5 AY6166661 AY6166661 AP63236 21 32 4.8 1065 5 AF3327633 AF332563 Megalobra 22 32 4.8 1170 5 AP170124 AY148493 Anguilla <td>123456789011234567890112345678901234567890112345678900112345678900112345454545454545454545454545454545454545</td> <td>6700 67219999888888888888888888888888888888888</td> <td>100.0 47.9 34.22 34.22 34.22 5.77 5.</td> <td>670 670 1154 5099 5108 567 819 885 894 1156 1162 1279 633 633 1065 1164 2718 2838 1156 1279 633 1065 1170 1171 1279 2393 2484 3627 3975 6260 567 633 11058 1179 2393 2484 3627 3975 6260 567 633 11058 1179 2393 2484 3627 3975 6260 567 633 11058 1179 2393 1158 1179 2393 1158 1179 2393 1158 1179 2393 1158 1179 3975 6267 633 1179 633 1171 1279 2393 1158 1179 5073 897 507 507 507 507 507 507 507 50</td> <td>ๅ๏๎๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</td> <td>E 59319 AR207433 AY334554 AF133815 E 59318 AR207432 AF332594 AF458105 BD096861 AF416490 AY053361 AF140281 AF140282 AF134200 CYIGH AF418921 CCGHG AY053360 AY375301 AF389238 AY616661 AY148493 AF332563 AF337033 HNPGH AY170124 HMPGH CTEGRH AY170124 HMPGH CTEGRH AY375302 AY616666 HYPSCGH CIGCGH CIGCGH CIGCGH CIGCGH CIGCGH CIGCGH CIGCGH AF463498 CAU28388 AY160977 AF461273 CCGH AF069399 PNAGH AR222493 AF147792 PGSGHA AR222492 BX908793</td> <td>E59319 Vector expr AR207433 Sequence AY334554 Misgurnus AF133815 Misgurnus E59318 Vector expr AR207432 Sequence AF32594 Cyprinus BD096861 Method fo AF416490 Labeo roh AY053361 Catla cat AF140281 Cirrhinus AF140281 Cirrhinus AF140282 Catla cat AF140282 Catla cat AF140281 Cirrhinus ca AF14092 Labeo roh X51969 Cyprinus ca AF418921 Labeo roh X51969 Cyprinus ca AF389238 Mylophary AY616661 Ctenophar AY148493 Anguilla AF389238 Mylophary AY616661 Ctenophar AY148493 Anguilla AF332563 Megalobra X60473 H.nobilis (AY170124 Megalobra X60475 H.mulitrix X60474 C.idellus (M27094 Ctenopharyn AY375302 Ictiobus AY616666 Anguilla M94348 Hypophthalm X60988 C.idella gc X60419 C.idellus g AF463498 Megalobra U28388 Carassius a AY160977 Carassius AF401273 Carassius</td>	123456789011234567890112345678901234567890112345678900112345678900112345454545454545454545454545454545454545	6700 67219999888888888888888888888888888888888	100.0 47.9 34.22 34.22 34.22 5.77 5.	670 670 1154 5099 5108 567 819 885 894 1156 1162 1279 633 633 1065 1164 2718 2838 1156 1279 633 1065 1170 1171 1279 2393 2484 3627 3975 6260 567 633 11058 1179 2393 2484 3627 3975 6260 567 633 11058 1179 2393 2484 3627 3975 6260 567 633 11058 1179 2393 1158 1179 2393 1158 1179 2393 1158 1179 2393 1158 1179 3975 6267 633 1179 633 1171 1279 2393 1158 1179 5073 897 507 507 507 507 507 507 507 50	ๅ๏๎๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	E 59319 AR207433 AY334554 AF133815 E 59318 AR207432 AF332594 AF458105 BD096861 AF416490 AY053361 AF140281 AF140282 AF134200 CYIGH AF418921 CCGHG AY053360 AY375301 AF389238 AY616661 AY148493 AF332563 AF337033 HNPGH AY170124 HMPGH CTEGRH AY170124 HMPGH CTEGRH AY375302 AY616666 HYPSCGH CIGCGH CIGCGH CIGCGH CIGCGH CIGCGH CIGCGH CIGCGH AF463498 CAU28388 AY160977 AF461273 CCGH AF069399 PNAGH AR222493 AF147792 PGSGHA AR222492 BX908793	E59319 Vector expr AR207433 Sequence AY334554 Misgurnus AF133815 Misgurnus E59318 Vector expr AR207432 Sequence AF32594 Cyprinus BD096861 Method fo AF416490 Labeo roh AY053361 Catla cat AF140281 Cirrhinus AF140281 Cirrhinus AF140282 Catla cat AF140282 Catla cat AF140281 Cirrhinus ca AF14092 Labeo roh X51969 Cyprinus ca AF418921 Labeo roh X51969 Cyprinus ca AF389238 Mylophary AY616661 Ctenophar AY148493 Anguilla AF389238 Mylophary AY616661 Ctenophar AY148493 Anguilla AF332563 Megalobra X60473 H.nobilis (AY170124 Megalobra X60475 H.mulitrix X60474 C.idellus (M27094 Ctenopharyn AY375302 Ictiobus AY616666 Anguilla M94348 Hypophthalm X60988 C.idella gc X60419 C.idellus g AF463498 Megalobra U28388 Carassius a AY160977 Carassius AF401273 Carassius

Oligomer Search GenBank Alignments Against cDNA

RESULT 10 AF416490 LOCUS AF416490 885 bp RNA linear VRT 02-MAR-2002 DEFINITION Labeo rohita growth hormone protein precursor RNA, complete cds. ACCESSION AF416490 VERSION AF416490.1 GI:19071231 KEYWORDS .
SOURCE Labeo rohita (rohu) ORGANISM Labeo rohita Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Cypriniformes; Cyprinidae; Labeo.
REFERENCE 1 (bases 1 to 885) AUTHORS Rajesh,R. and Majumdar,K.C. TITLE Labeo rohita growth hormone gene mRNA sequence, complete CDS JOURNAL Unpublished REFERENCE 2 (bases 1 to 885)
AUTHORS Rajesh,R. and Majumdar,K.C. TITLE Direct Submission JOURNAL Submitted (05-SEP-2001) Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, AP 500 007, India
FEATURES Location/Qualifiers source 1885 /organism="Labeo rohita" /mol_type="pre-RNA" /db_xref="taxon:84645"
prim_transcript 1885 5'UTR 147 CDS 48671 /codon_start=1 /product="growth hormone protein" /protein_id="AAL84169.1"
/db_xref="GI:19071232" /translation="MARALVLLSVVLVSLLVNQGRASDNQRLFNNVVVRVQHLHQLAA KMINDFDDNLLPEDRRLLSKTIPMSFCISDYIEAPTGKDEAQRSSMLKLLRISFRLIE SWELASQILSRTVSNSLTANQINEKLADLKMGISVLIKGCLDGQPNMDDNDSLPLPFE DFYLTTEDNDLTKNFRLLACFKKDMHKVETYLRVANCRRSLDSNCTL" 3'UTR
polyA_signal 879885 ORIGIN
Query Match 5.7%; Score 38; DB 5; Length 885; Best Local similarity 100.0%; Pred. No. 8.8e-09; Matches 38; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qy 117 CGTGTACAACACCTGCACCAGCTGGCTGCAAAAATGAT 154 Db 150 CGTGTACAACACCTGCACCAGCTGGCTGCAAAAATGAT 187

Length-Limited (8 to 20) Oligomer Search GenBank Hit Table cDNA

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.
OM nucleic - nucleic search, using sw model
Run on: November 11, 2004, 07:42:54 ; Search time 3264 Seconds (without alignments) 9707.138 Million cell updates/sec
Title: US-XX-XXX-XXXC-15 Perfect score: 670 Sequence: 1 ctacctggagcgaaatggctgcgccagtagacaattagcc 670
scoring table: $\operatorname{Gapop}_{60.0}$, $\operatorname{Gapext}_{60,0} \rightarrow \operatorname{Gap}_{enalties}$
Searched: 4526729 seqs, 23644849745 residues
Word size: 0
Total number of hits satisfying chosen parameters: 773916
Minimum DB seq length: 8 Maximum DB seq length: 20 Minimum & Maximum
Post-processing: Listing first 1000 summarie€ngth Limitations
Database : GenEmbl:* 1: gb_ba:* 2: gb_htg:* 3: gb_in:* 4: gb_om:* 5: gb_ov:* 6: gb_pat:* 7: gb_ph:* 8: gb_pl:* 9: gb_pr:* 10: gb_ro:* 11: gb_sy:* 13: gb_un:* 14: gb_vi:*
Pred. No. is the number of results predicted by chance to have a

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Length-Limited (8 to 20) Oligomer Search GenBank Alignments cDNA

RESULT 2 A10411/c						
LOCUS	A10411	17	bp	DNA	linear	PAT 23-NOV-1993
DEFINITION	Oligonucleotide.					
ACCESSION	A10411					
VERSION	A10411.1 GI:490708					
KEYWORDS SOURCE	synthetic construct					
ORGANISM	synthetic construct					
OKGANISM	artificial sequences.					
REFERENCE	1 (bases 1 to 17)					
AUTHORS	Harris, T.J.R., Docherty,	A. J. I	P., Re	ynolds, J	J.J. and M	lurphy, G.
TITLE	Process for the production	on of	fápr	otein		
JOURNAL	Patent: EP 0188312-A 10	23-31	UL-198	6;		
	CELLTECH LIMITED					
FEATURES	Location/Qualif	iers				
source		hoti.		truct"		
	/organism="synt /mol_type="unas	sign		" ucc		
	/db_xref="taxon	326	30"			
ORIGIN	/ 45_x1 c1 = 24x511					
Query Mat	ch 2.2%; Sco l Similarity 100.0%; Po				ength 17;	
	15; Conservative 0;				Indels	0; Gaps 0;
naceneo	is, conservative o,	11131	ind cerre	J 0,	Inders	0, Gap5 0,
Qy 2	22 TTCTGCAACTCTGAC 236					
Ť						
Db	17 TTCTGCAACTCTGAC 3					

Claim:

An isolated polynucleotide comprising SEQ ID NO:1.

Claim Interpretation :

Comprising: must have all of SEQ ID NO:1, may include any flanking sequences, as in the claim above.

Consisting of: limited to only SEQ ID NO:1, with No flanking sequences.

Search Strategy:

A standard search looking for full length hits is performed.

Claim:

An isolated polypeptide comprising SEQ ID NO: 2.

Claim Interpretation:

Comprising: must have all of SEQ ID NO:2, may include any flanking sequences, as in the claim above.

Consisting of: limited to only SEQ ID NO:2, with **No** flanking sequences.

Search Strategy:

A standard search looking for full length hits is performed in all the amino acid databases.

Claim:

An isolated polynucleotide comprising a nucleotide sequence of SEQ ID NO:1

Claim Interpretation:

This claim embraces any fragment of SEQ ID NO:1 due to the language "--a nucleotide sequence of--."

This could be obviated by amending to read "--the nucleotide sequence of--."

Search Strategy:

A standard nucleotide sequence search as well as a standard oligomer search is performed using SEQ ID NO:1 as a query.

Claim:

An isolated polynucleotide comprising a polynucleotide with at least 90% identity over its entire length to SEQ ID NO:1.

Claim Interpretation:

This claim encompasses any sequence that has 90% or higher sequence identity over its entire length to SEQ ID NO:1.

Search Strategy

A standard search looking for full length hits is performed.

Hits having at least 90% identity will appear in the results.

Claim:

An isolated polynucleotide comprising a polynucleotide encoding the amino acid sequence of SEQ ID NO:2.

Claim Interpretation:

The claim encompasses any polynucleotide that encodes the polypeptide of SEQ ID NO:2.

Search Strategy:

SEQ ID NO:2 is "back translated" into a nucleic acid sequence, which is used as a query to search the nucleic acid databases .

Claim:

An isolated polynucleotide comprising a polynucleotide which hybridizes under stringent conditions to SEQ ID NO: 1.

Claim Interpretation:

Claim is interpreted as embracing any sequence with less than 100% complementarity or identity to SEQ ID NO:1.

Search Strategy

A standard oligomer search as well as a standard search is perfomed.

Claim:

An isolated polynucleotide comprising at least 15 <u>contiguous</u> nucleotides of SEQ ID NO:1.

Claim Interpretation:

The claim embraces any fragment of 15 nucleotides or greater of SEQ ID NO:1.

Search Strategy:

A standard oligomer search is performed with a length of 15 nucleotides set as the lower limit for a hit.

Claim:

An isolated polypepide comprising at least 15 <u>contiguous</u> amino acids of SEQ ID No:2.

Claim Interpretation:

The claim embraces any fragment of 15 amino acids or greater of SEQ ID NO:2.

Search Strategy:

A standard oligomer search is performed with a length of 15 amino acids set as the lower limit for a hit.

Claim:

An oligonucleotide consisting of 8 to 20 nucleotides which specifically hybridizes to the nucleic acid sequence of SEQ ID NO:1.

Claim Interpretation:

The specification teaches that oligonucleotides which specifically hybridize need not have 100% sequence correspondence.

Search Strategy

A Score/Length search is performed with 8 and 20 as lower and upper limits respectively.

Claim 10: Searching a SNP

Claim:

A nucleic acid comprising SEQ ID NO:1 where the nucleotide at position 101 is a T.

Claim Interpretation:

The Claim encompasses any sequence comprising SEQ ID NO:1, with a T at position 101.

Search Strategy:

A standard nucleotide sequence search is performed for SEQ ID NO:1. The examiner manually searches for any changes at position 101.

Thanks!

James (Doug) Schultz Supervisory Patent Examiner Art Unit 1635 571-272-0763 James.Schultz@uspto.gov

Barb O'Bryen Scientific and Technical Information Center (STIC)

Questions?

Ram R. Shukla Supervisory Patent Examiner Art Unit 1634 571 272 0735 ram.shukla@uspto.gov