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2 Volume and share of public U.S. Al patent applications,
1976-2020
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5 Volume and Share of Public U.S. Biotech Al
Patent Applications, 2002-2020
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Share of Al and Biotech AI Public Applications
by Al Technology Component, 2020
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“ Al vs. Machine Learning vs. Neural Networks

Artificial Intelligence

Machine Learning

Neural Networks
/ Deep Learning
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Types of Machine Learning

Machine Learning (ML): A subset of Al that allows models to learn and adapt without following explicit
instructions, by analyzing and drawing inferences from patterns in data.

Unsupervised learning: Learns patterns exclusively from unlabeled data

— EXx: cluster analysis (hierarchical, k-means, mixture models), dimensionality reduction (principal component
analysis (PCA)), auto-encoder

Supervised Learning: Input objects and a desired output value train a model using labeled data

— Ex: neural network, support vector machines (SVM), decision trees (random forest), linear regression,
logistic regression

Kilpatrick Confidential

= Semi-supervised learning: Combines supervised and unsupervised learning by using both labeled and
unlabeled data to train artificial intelligence (Al) models for classification and regression tasks

= Reinforcement Learning: Combination with optimal control, concerned with how an intelligent agent takes
actions in a dynamic environment to maximize cumulative reward.

— Ex: Markov decision process (MDP), Dynamic programming, Value iteration, Policy iteration. Q-learning.
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Types of Machine Learning
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Types of Machine Learning

Supervised
Learning

Model training with labelled data

N

Machine
Learning

Unsupervised

Learning

Model training with unlabelled data
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Types of Machine Learning Inventions

Type 1 - New model <

Type 2 - New method of training model
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Support Vector Regression
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Support vector regression (SVR) \
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Neural Network
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Graph Neural Network

Input Graph

GNN blocks
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Transformer Model

Encoder, on the left half of the Transformer
architecture, is to map an input sequence to a
sequence of continuous representations,
which is then fed into a decoder.

Decoder, on the right half of the architecture,
receives the output of the encoder together
with the decoder output at the previous time
step to generate an output sequence.
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Transformer Models - Self-Attention head

= (relative importance of each component in a sequence relative to the other components in that sequence)
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Generative Al
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Improving Generative Al (LLMs)

= Prompt engineering - tailored inputs to get desired outputs from LLMs. Model’s underlying structure stays

same; prompts guide the model’s response accurately. Example prompt engineering methods: few-shot
prompting, analogical prompting, and chain of density.

» Fine-tuning - Fine-tuning involves adapting a pre-trained model by further training on new data to enhance its

understanding and response capabilities regarding nuances not initially covered.

= Retrieval-Augmented Generation (RAG)

— Retrieve: The user query is used to retrieve relevant context from an external knowledge source. For this, the user
query is embedded with an embedding model into the same vector space as the additional context in the vector
database. This allows to perform a similarity search, and the top k closest data objects from the vector database are
returned.

— Augment: The user query and the retrieved additional context are stuffed into a prompt template.

— Generate: Finally, the retrieval-augmented prompt is fed to the LLM
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Retrieval-Augmented Generation (RAG)
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Reinforcement Learning

The general framework of
reinforcement learning
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Diagnostics/Theranostics
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Molecular Assays: cancer, fetal, transplant
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Histopathology
Images
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Heart measurements
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Other Examples

Risk stratification for patient deterioration (e.g., death or ICU): routine vital signs, laboratory
data, and patient demographics

Plethysmogram (PLETH) and Photoplethysmogram (PPG)

— sleep apnea, Atrial Fibrillation Prediction, Biometric identification, Blood glucose analysis,
Blood pressure analysis

Surgical Risk: identifying groups with statistical probability outcomes

Trauma: Using CT head examinations, CNN detected intracranial hemorrhage and other acute
brain findings, such as mass effect or skull fractures
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Lock and Key Analogy - Five Main Challenges
for Al in Drug Discovery

LOCK AND KEY ANALOGY
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Al Can Help Develop a Deeper Understanding
of Targets and Identify New Molecules

Biology - Finding the Right Biological
Targets

= Identify new genome-wide targets using AI mining of -
omics data

= Map novel disease pathways, protein/drug and
polypharmacological interactions based on Al analysis
across networks (leveraging academic and experimental
data)

= Identify new targets and leads from AI analysis of
phenotypic results (e.g., images)

= Understand protein interactions, function, and drugability
using protein structure prediction

= Identify novel binding sites and protein interactions through
modeling of protein motion

Chemistry - Identifying and Designing
Small Molecules for Preclinical Candidates

= Ability to explore a vast array of chemical space and
conduct molecular dynamics to screen for small molecule
hits

= Al analysis of molecule structure and experimental data to
predict small-molecule structure/activity relationships

= Analysis of prospective protein target to generate lead-like
small molecules

= Al mining of literature and internal data to predict optimal
synthetic routes

= Preselects drug leads based on Al-predicted
pharmacokinetic and pharmacodynamic properties

= Preemptively flags leads and candidates for predicted off-
target effects
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SOURCE: QURESHI ET AL. (2023)

Al-Based Software Tools for Drug Development Process

Reference

Description

Source code

AlphaFold2 [35]

DeepChem [80]
DeepBind [81]

DeepBar [82]
Deep-Screening [83]
DeepScreen [84]
DeepConv-DTI [45]

DeepPurpose [24]
DeepTox [85]

AtomNet [86]
PathDSP [87]

Graph level representa-

tion [88]
Chemical VAE [89]

DeepGraphMol [87]

TorchDrug [26]

Deep learning based model for 3D structure prediction of proteins from
amino acid sequences

A deep learning library for drug discovery and computational chemistry

A computational tool to analyze binding between the protein and DNA/RNA

A method for accurate and fast prediction of binding free energy
Web-server based in deep learning for virtual screening of compounds
High performance drug target interaction

A convolutional neural network based model for predicting drug-target in-
teractions

A Deep learning library for drug-target interaction, drug-drug interaction,
protein-protein interaction and protein function prediction

A deep learning model for toxicity prediction of chemical compounds

A deep convolutional neural network for bioactivity prediction

A deep learning method for predicting drug sensitivity using cancer cell
lines

Learning graph representation for drug discovery

An auto-encoder based framework to generate new molecules
A computational method for molecule generation with desired properties

using graph neural networks and reinforcement learning
A pytorch based flexible framework for drug discovery models

https://github.com/deepmind/alphafold/

https://github.com/deepchem/deepchem
https://github.com/MedChaabane/DeepBind-
with-PyTorch
https://fastmbar.readthedocs.io/en/latest/
http://deepscreening xielab.net/
https://github.com/cansyl/DEEPScreen
https://github.com/GIST-CSBL/DeepConv-DTI

https://github.com/kexinhuang12345/
DeepPurpose
http://www.bioinf.jku.at/research/DeepTox/
github
https://github.com,/TangYiChing/PathDSP

https://github.com/ZJULearning /graph level_
drug discovery
https://github.com/aspuru-guzik-group/
chemical vae/
https://github.com/dbkgroup/prop_gen

https://torchdrug.ai/
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SOURCE: QURESHI ET AL. (2023)

Software for MD Simulation, Modeling, Docking,
Visualization, and Analysis of Molecules

Reference Description Pros Cons Source code
AMBER [144] A package for MD simulation High Pedormance MD, Com- License required for parallel https://ambermd.org/
prehensive trajectory analy- CPU or GPU computation
sis tools
ACEMD [145] An accelerated platform for  Super computer level perfor- License required for ful func- https://www.acellera.com/
faster and longer biomolecular  mance tionality
simulations
AutoDock A program for molecular dock-  Receptor flexibility, blind Difficult to dock small pep- https://vina.scripps. edu/
Vina [146] ing and screening docking tides

DeePMD [147]

RBio3D [148]
Pymol [149]

Rosetta
Commons [ 124]

A deep learning package for MD
simulation and energy represen-
tation

R package for the analysis of MD
trajectories

An interactive platform for visu-
alization of molecules

A tool for predicting the mutant
structure

Optimized code, interfaced
with Tensorflow

Tools for protein-networks,
conformations

Homology Modeling, Dock-
ing, Virtual Screening
Protein modeling and folding

Model compression issues

License required for full fea-
tures

Preference for aromatics, Pref-
erence for hydrogen bonding

https:// github.com/
deepmodeling,/deepmd-kit/

http:/ /thegrantlab.org/bio3d/
https://pymol.org/2/

https: //www _rosettacommons.org,
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Al in manufacturing

Process Design and Scale-up:

— Al models such as machine learning—generated using process development data—could be
leveraged to more quickly identify optimal processing parameters or scale-up processes,

Advanced Process Control (APC):

— Al methods can also be used to develop process controls that can predict the progression of a
process by using Al in combination with real-time sensor data.

Process Monitoring and Fault Detection:

— Al methods can be used to monitor equipment and detect changes from normal performance
that trigger maintenance activities, reducing process downtime

Trend Monitoring

— Al can be used to examine consumer complaints and deviation reports containing large
volumes of text to identify cluster problem areas and prioritize areas for continual
improvement.
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Al in Clinical Trials

Advanced data analytics and AI automation

TRIAL DESIGN

Assess feasibility of protocol
design for patient recruitment
using RWD.

Assess site performance (e.g.
enrollment and dropout rates)
with real-time monitoring.

Analyse and interpret
unstructured and structured
data from previous trials and
scientific literature.

TRIAL STARTUP

Mine EHRs and publicly
available content, including
trial databases and social
media, to help match patients
with trials, by using NLP and
ML.

Create drafts of investigator
and site contracts and
confidentiality agreements by
smart automation.

TRIAL CONDUCT

Assess site performance (e.g.
enrollment and dropout
rates) with real-time
monitoring.

Analyse digital biomarkers on
disease progression, and
other quality-of-life
indicators.

Automate sharing of data
across multiple systems.

STUDY CLOSEOUT

Complete sections of the
final clinical trial report for
submission by using NLP

Data cleaning by ML
methods.
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Al in Clinical Trials Cont...

AI-enhanced mobile applications, wearables,
biosensors and connected devices

TRIAL STARTUP TRIAL CONDUCT
= Expedite recruitment and create a more = Enhance adherence through smartphone alerts
representative study cohort through cloud-based and reminders
applications.
PP = eTracking of medication using smart pillboxes,
= Simplify and accelerate the informed consent and tools for visual confirmation of treatment
process using eConsent. compliance.

= eTracking of missed clinic visits, and trigger non-
adherence alerts.
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Image-Guided Surgery
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Registration for imaging

Evaluating the risk of post-surgical complications and selecting individuals for operative
procedures (Prognosis for outcomes for different treatment)

Segmentation can be used to identify mass (tumor, to remove vascular calcifications)

Placing an overlay on the surgeon’s video screen during an operation to suggest where it is
safer or less safe to operate

Allow the gripper to react to the deformation of the gauze and progress of the cutting trajectory
with a translation unit vector along an allowable set of directions. (B. Thananjeyan, et al. 2017
IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 2371-
2378,

Anticipate next 15 to 30 seconds of operation and provide additional oversight during surgery

Outcome of supervised autonomous procedures is superior to surgery performed by expert
surgeons and RAS techniques in ex vivo porcine tissues and in living pigs (Shademan A, e al.,.
Sci Transl Med. 2016 May 4;8(337):337ra64.
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